Self-Tuning Fuzzy Pid Controllers Application on Industrial Hydraulic Actuator Using Unique System Identification Approach

Dheeraj Nimawat, Naveen Nagar

Abstract


In this paper, Self Tuning Fuzzy PID controller is developed to improve theperformance of the electro-hydraulic actuator. The controller is designed based on the mathematical model of the system which is estimated by using System Identification technique.The model is performed in linear discrete model to obtain a discrete transfer function for the system. Model estimation procedures are done by using System Identification Toolbox in Matlab. Data for model estimation is taken from an experimental works. Fuzzy logic is used to tune each parameter of PID controller. Through simulation in Matlab by selecting appropriate fuzzy rules are designed to tune the parameters Kp, Ki and Kd of the PID controller, the performance of the hydraulic system has improved significantly compare to conventional PID controller.


Keywords


Identification, Hydraulic Actuator, Position Control, Self-Tuning, Fuzzy PID

Full Text:

PDF

References


Huang S. H, Chen Y. H. C. 2006. Adaptive Sliding Control with Self-Tuning Fuzzy Compensation for Vehicle Suspension Control.Mechatronics, Vol. 16: 607-622.

Jelali M., Schwarz H. 2005. Nonlinear Identification of Hydraulic Servo-drive Systems.IEEE Control Systems: 17-22.

KwakByung-Jae, Andrew E. Yagle, Joel A.Levitt. 1998. Nonlinear System Identification of Hydraulic Actuator Friction Dynamics using a Hammerstein Model. IEEE:1933-1936.

Anyi H., Yiming R., Zhongfu Z., and Jianjun Hu. 1997. Identification and Adaptive Control for Electro-hydraulic Servo Systems Using Neural Networks, In Proceeding of the 1997 IEEE International Conference on Intelligent Processing Systems, 688-692. Beijing, China.

Lizarde C., Loukianov A., Sanchez E. 2005. Force Tracking Neural control for an Electrohydraulic Actuator via Second Order Sliding Mode. In Proceeding of the 2005 IEEE

International Symposium on Intelligent Control, 292-297, Limassol, Cyprus.

Kaddissi C., Kenne J-P., Saad M. 2007. Identification and Real-time Control of an Electrohydraulic Servo System Based on Nonlinear Backstepping.IEEE Transaction on Mechatronics, Vol. 12 No.1:12-21.

Lim,T. J. 1997. Pole Placement Control of an Electro-hydraulic Servo Motor. In Proc. of 1997 2nd Int. Conf. Power Electronic Drive System, Part 1, Vol. 1, 350-356. Singapore.

Plahuta M. J., Franchek M. A., Stern H. 1997. Robust Controller Design for a Variable Displacement Hydraulic Motor.Proc. of ASME Int. Mech. Eng. Congr.Expo.Vol. 4, 169–176.

Zeng W., Hu J. 1999. Application of Intelligent PDF Control Algorithm to an Electro hydraulic Position Servo System.In Proc. of IEEE/ASME Int. Conf. Adv. Intell. Mechatronics, 233–238. Atlanta, GA.

Yu W.-S., Kuo T.-S. 1996. Robust Indirect Adaptive Control of the Electro-hydraulic Velocity Control Systems, In Proc. of Inst. Elect. Eng.: J. Control Theory Appl., Vol. 143 (5):448–454.

Yu W.-S., Kuo T.-S. 1997. Continuous-time Indirect Adaptive Control of the Electro-hydraulic Servo Systems. IEEE Transactions Control System Technology, Vol. 5, No. 2 : 163–177.

Mihajlov M., Nikolic V., Antic D. 2002. Position Control of Electro Hydraulic Servo System Using Sliding Mode Control Enhanced By Fuzzy PI Controller, FactaUniversitaties Series: Mechanical Engineering , Vol. 1 No. 9 : 1217–1230.

Sam Y. M., Huda K. 2006. Modeling and Force Tracking Control of Hydraulic Actuator for an Active Suspension System, In Proceeding of the 2006 IEEE ICIEA.

Loukianov A. G., Sanchez E., Lizarde C. 2007. Force Tracking Neural Block Control for an Electro-Hydraulic Actuator via Second-Order Sliding Mode.Int. Journal of Robust and Nonlinear Control, Wiley InterScience, 20 June : 319-332.

Liu R. and Alleyne A. 2000. Nonlinear Force/pressure Tracking of an Electrohydraulic

Actuator.Journal Dynamic System Measurement Control-Trans. ASME, Vol. 122 : 232–237.

Kaddissi C., Kenn´e J.-P., Saad M. 2004. Position Control of an Electro-hydraulic Servo System - a Non-linear Backstepping Approach. Int. Conf. Informatics in Control, Automation

and Robotics-ICINCO, Setubal, Portugal.

Jianjun Y. ,Liquan W. , Caidong W., Zhonglin Z. and Peng J. 2008. ANN-based PID Controller for an Electro-hydraulic Servo System.In Proceedings of the IEEE International Conference on Automation and Logistics, 18-22. Qingdao, China.

Shao J., Chen L., Sun Z. 2005. The Application of Fuzzy Control Strategy in Electro-hydraulic Servo System. In Proceedings of the IEEE International Conference on Mechatronics &Automation, 2010-2016. Niagara Falls, Canada.

Huang Y. J., Kuo T. C., Lee H. K. 2007. Fuzzy-PD Controller Design with Stability Equations for Electro-hydraulic Servo Systems. In Proceeding of International Conference on Control, Automation and Systems 2007, 2407-2410.COEX, Seoul, Korea.

Hong Li, Shibo X. 2008. Fuzzy Internal Mode Control for Electro-hydraulic Servo Systems, In Proceedings of the 27th Chinese Control Conference, 372-376.Kunming,Yunnan, China.

L. Ljung. 1999. System Identification: Theory for the User, Upper Saddle River Prentice-Hall, PTR New Jersey.

Soderstrom T. and Stoica P. 1989. System Identification. Prentice-Hall Int., London.

L. Ljung. 2002. System Identification: Theory for the User, Prentice-Hall.

Avila M. A., Loukianov A. G., and Sanchez E. N. 2004. Electro-Hydraulic Trajectory Tracking.In Proceedings of the 2004 American Control Conference, 2603-2608. Boston, Massachusetts.

Kyoung K. A., Bao K. N., Yoon H. S. 2007. Self Tuning Fuzzy PID Control for Hydraulic Load Simulator. Int. Conference on Control, Automation, and Systems 2007, 345-349. Ceox, Seoul, Korea.

Kyoung K. A., Bao K. N. 2006. Position Control of Shape Memory Alloy Actuators Using Self Tuning Fuzzy PID Controller.Int. J. of Control, Automation, and Systems, Vol.4 (6): 756-762.




DOI: http://dx.doi.org/10.22385/jctecs.v22i0.283