An Evolution Review in Solar Photovoltaic Materials

Sandeep Gupta

Abstract


The sensitivity towards the environmental concerns among the humans is picking up the pace. An energy source, which meets the development goals without compromising with this source for the next generation, is the need of the current time. Renewable energy sources are the only solution of this problem. Solar energy is the most abundant form of renewable energy. Since the last decade, the solar energy generation costs have shown a sharp decline. There are many reasons include use of better materials, improved technologies and increased efficiencies of the solar panels. This paper discusses about various solar photovoltaic (SPV) materials being used throughout the globe. A brief description of both, the fully developed and under-developing PV material technologies has been provided. This paper covered the different topics such as the structures of the conventionally used PV cells and their laboratory efficiencies. Various manufacturing processes of each cell have also been highlighted. This paper will provide an overview of current scenario of the PV materials to the industrialists, scientists and manufacturers. Thus, this paper gives the clearer picture in the direction of improvement and innovations in SPV materials as well. 


Keywords


Crystalline Material, Photovoltaic, Silicon materials, Solar cells, Solar energy

Full Text:

PDF

References


Prakash Kumar Sen, Krishna Awtar and Shailendra Kumar Bohidar: A Review of Major Non-Conventional Energy Sources. International Journal of Science, Technology & Management, 4(01), 2015, 20-25.

Panwar, N. L., S. C. Kaushik, and Surendra Kothari: Role of renewable energy sources in environmental protection: a review. Renewable and Sustainable Energy Reviews, 15(3), 2011, 1513-1524.

Nema, P., Nema, R. K., & Rangnekar, S.: A current and future state of art development of hybrid energy system using wind and PV-solar: A review. Renewable and Sustainable Energy Reviews, 13(8), 2009, 2096-2103.

Green, Martin A.: Solar cells: operating principles, technology, and system applications, Prentice-Hall, United States, 1982.

Rogiros Dimitrs Tapakis, Alexandros George Charalambides: Performance evaluation of a photovoltaic park in Cyprus using irradiance sensors. Journal of Power Technologies, 94(4), 2014, 296–305.

Wenham, S. R., and M. A. Green: Silicon solar cells. Progress in Photovoltaics: Research and Applications, 4(1), 1996, 3-33.

National Center for Photovoltaics (NCPV) Homepage, https://www.nrel.gov/pv/

Akinyele, D. O., R. K. Rayudu, and N. K. C. Nair: Global progress in photovoltaic technologies and the scenario of development of solar panel plant and module performance estimation− Application in Nigeria. Renewable and Sustainable Energy Reviews, 48, 2015, 112-139.

Goetzberger, Adolf, Joachim Knobloch, and Bernhard Voss: Crystalline silicon solar cells. editorial John Wiley & Sons Ltd 1, 1998.

Green, Martin A., et al.: Solar cell efficiency tables (Version 45). Progress in photovoltaics: research and applications, 23.1, 2015, 1-9.

Green, Martin A., and Keith Emery: Solar cell efficiency tables. Progress in Photovoltaics: Research and Applications, 1.1, 1993, 25-29.

Saga, Tatsuo: Advances in crystalline silicon solar cell technology for industrial mass production. NPG Asia Materials, 2.3, 2010, 96-102.

Tyagi, V. V., et al.: Progress in solar PV technology: research and achievement. Renewable and sustainable energy reviews, 20, 2013, 443-461.

14. Stutenbaeumer, Ulrich, and Belayneh Mesfin: Equivalent model of monocrystalline, polycrystalline and amorphous silicon solar cells. Renewable Energy, 18.4, 1999, 501-512.

Simon, John, et al.: Upright and Inverted Single-Junction GaAs Solar Cells Grown by Hydride Vapor Phase Epitaxy. IEEE Journal of Photovoltaics, 7.1, 2017, 157-161.

Richards, B. S.: Comparison of TiO2 and other dielectric coatings for buried‐contact solar cells: a review. Progress in photovoltaics: research and applications, 12.4, 2004, 253-281.

Chu, T. L., and K. N. Singh: Polycrystalline silicon solar cells on metallurgical silicon substrates. Solid-State Electronics, 19(10), 1976, 837-838.

Kerschaver, Emmanuel Van, and Guy Beaucarne. "Back‐contact solar cells: A review." Progress in Photovoltaics: Research and Applications 14.2, 2006, 107-123.

Fabre, E., & Baudet, Y. : Polycrystalline silicon solar cells. In Photovoltaic Solar Energy Conference, 1978, pp. 178-186.

Pandey, A. K., et al.: Recent advances in solar photovoltaic systems for emerging trends and advanced applications. Renewable and Sustainable Energy Reviews, 53, 2016, 859-884.

Knechtli, R. C., Loo, R. Y., & Kamath, G. S.: High-efficiency GaAs solar cells. IEEE Transactions on Electron Devices, 31(5), 1984, 577-588.

Cotfas, D. T., P. A. Cotfas, and S. Kaplanis: Methods and techniques to determine the dynamic parameters of solar cells: Review. Renewable and Sustainable Energy Reviews 61, 2016, 213-221.

Sivananthan, Sivalingam, Michael Carmody, Robert W. Bower, Shubhrangshu Mallick, and James Garland: Tunnel homojunctions in group IV/group II-VI multijunction solar cells. U.S. Patent 9,455,364, issued September 27, 2016.

Kurtz, Steven R.,: InGaAsN/GaAs heterojunction for multi-junction solar cells. U.S. Patent No. 6,252,287. 26 Jun. 2001.

Chopra, K. L., Paulson, P. D., & Dutta, V.: Thin‐film solar cells: an overview. Progress in Photovoltaics: Research and Applications, 12(2.3), 2004, 69-92.

Chopra, Kasturi Lal, and Suhit Ranjan Das: Why thin film solar cells?. Thin film solar cells. Springer US, 1-18, 1983.

Coutts, Timothy J., et al.: Critical issues in the design of polycrystalline, thin‐film tandem solar cells. Progress in Photovoltaics: Research and Applications, 11(6), 2003, 359-375.

Aberle, A. G.: Thin-film solar cells. Thin solid films, 517(17), 2009, 4706-4710.

Galloni, R.: Amorphous silicon solar cells. Renewable Energy, 8(1), 1996, 400-404.

https://www.ecn.nl/news/newsletter-en/2010/june-2010/solar-cells-on-foil/

Kołodziej, A.: Staebler-Wronski effect in amorphous silicon and its alloys. Opto-electronics review, 12(1), 21-32 (2004).

Kakkad, R., Smith, J., Lau, W. S., Fonash, S. J., & Kerns, R.: Crystallized Si films by low‐temperature rapid thermal annealing of amorphous silicon. Journal of applied physics, 65(5), 1989, 2069-2072.

Guo, L., Kondo, M., Fukawa, M., Saitoh, K., & Matsuda, A.: High rate deposition of microcrystalline silicon using conventional plasma-enhanced chemical vapor deposition. Japanese journal of applied physics, 37(10A), 1998, L1116.

Liu, X., Fang, J., Liu, Y., & Lin, T.: Progress in nanostructured photoanodes for dye-sensitized solar cells. Frontiers of materials science, 10(3), 2016, 225-237.

Fritzsche, H.: Photo-induced structural changes associated with the Staebler-Wronski effect in hydrogenated amorphous silicon. Solid state communications, 94(12), 1995, 953-955.

Wu, X.: High-efficiency polycrystalline CdTe thin-film solar cells. Solar energy, 77(6), 2004, 803-814.

Energy Efficiency and Renewable Energy Homepage,https://www.energy.gov/eere/sunshot/cadmium-telluride

McCandless, Brian E., and James R. Sites.: Cadmium telluride solar cells. Handbook of Photovoltaic Science and Engineering, 2, 2003.

Morales-Acevedo, A.: Thin film CdS/CdTe solar cells: research perspectives. Solar Energy, 80(6), 2006, 675-681.

Ferekides, C. S., Britt, J., Ma, Y., & Killian, L.: High efficiency CdTe solar cells by close spaced sublimation. In IEEE Twenty Third Photovoltaic Specialists Conference, 1993, pp. 389-393.

Compaan, A. D., Gupta, A., Lee, S., Wang, S., & Drayton, J.: High efficiency, magnetron sputtered CdS/CdTe solar cells. Solar Energy, 77(6), 2004, 815-822.

Diso, D. G., Muftah, G. E. A., Patel, V., & Dharmadasa, I. M.: Growth of CdS layers to develop all-electrodeposited CdS/CdTe thin-film solar cells. Journal of the electrochemical society, 157(6), 2010, H647-H651.

McEvoy, Augustin Joseph, Luis Castaner, and Tom Markvart. Solar cells: materials, manufacture and operation. Academic Press, 2012.

Kumar, S. G., & Rao, K. K.: Physics and chemistry of CdTe/CdS thin film heterojunction photovoltaic devices: fundamental and critical aspects. Energy & Environmental Science, 7(1), 2014, 45-102.

Chevrier, Michèle : Vers des nouveaux systèmes pi-conjugués pour des applications photovoltaïques. PhD dissertation, université montpellier; Université de Mons, Belgique, 2016.

Wieting, Robert D., et al.: Single Junction CIGS/CIS Solar Module." U.S. Patent Application No. 13/086,135, 2011.

Pollock, Gary A., Kim W. Mitchell, and James H. Ermer: Thin film solar cell and method of making. U.S. Patent No. 4,915,745. 10 Apr. (1990).

Abou-Ras D, Kirchartz T, Rau U, editors: Advanced characterization techniques for thin film solar cells. Weinheim, Germany: Wiley-VCH , 2011.

Brun, N. R., Wehrli, B., & Fent, K.: Ecotoxicological assessment of solar cell leachates: Copper indium gallium selenide (CIGS) cells show higher activity than organic photovoltaic (OPV) cells. Science of the Total Environment, 543, 2016, 703-714.

International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI) Homepage, https://www.arci.res.in

Gwak, Jihye, et al.:Method of fabricating copper indium gallium selenide (CIGS) thin film for solar cell using simplified co-vacuum evaporation and copper indium gallium selenide (CIGS) thin film for solar cell fabricated by the same. U.S. Patent No. 9,472,708, 18 Oct. 2016.

Harvey, T. B., et al. : Copper indium gallium selenide (CIGS) photovoltaic devices made using multistep selenization of nanocrystal films. ACS applied materials & interfaces, 5(18), 2013, 9134-9140.

Cruz, J. S., Cruz, D. S., Arenas-Arrocena, M. C., DE, F., FLORES, M., & HERNÁNDEZ, S. M.: Green Synthesis of ZnS thin films by chemical bath deposition. Chalcogenide Letters, 12(5), 2015, 277-285.

Lee, Sang Woon, et al.: Improved Cu2O‐Based Solar Cells Using Atomic Layer Deposition to Control the Cu Oxidation State at the p-n Junction. Advanced Energy Materials, 4(11), 2014.

Metin, Burak, Deepak Nayak, and Mustafa Pinarbasi: Cigs based thin film solar cells having shared bypass diodes. U.S. Patent Application 13/163,485, filed June 17, 2011.

OSBORNE M. ZSW achieves world record CIGS lab cell efficiency of 22.6%. 2016-06-15. http://www. pv-teeh. org/news/zsw-achieves-world-record-cigs-lab-eell-e fficiency-of-22.6., 2016.

Duan, C., Furlan, A., van Franeker, J. J., Willems, R. E., Wienk, M. M., & Janssen, R. A.: Wide Bandgap Benzodithiophene–Benzothiadiazole Copolymers for Highly Efficient Multijunction Polymer Solar Cells. Advanced Materials, Wiley Online Library, 27(30), 2015, 4461-4468.

Chiechi, R. C., Havenith, R. W., Hummelen, J. C., Koster, L. J. A., & Loi, M. A.: Modern plastic solar cells: materials, mechanisms and modeling. Materials Today, 16(7), 2013, 281-289.

Günes, S., Neugebauer, H., & Sariciftci, N. S.: Conjugated polymer-based organic solar cells. Chemical reviews, 107(4), 2007, 1324-1338.

Chen, Jing‐De, et al.: Single‐junction polymer solar cells exceeding 10% power conversion efficiency. Advanced Materials, 27(6), 2015, 1035-1041.

Snaith, H. J.. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. The Journal of Physical Chemistry Letters, 4(21), 2013, 3623-3630.

Bagher, A. M., Introduction to Organic Solar Cells. Sustainable Energy, 2(3), 2014, 85-90.

Mayer, A. C., Scully, S. R., Hardin, B. E., Rowell, M. W., & McGehee, M. D.: Polymer-based solar cells. Materials today, 10(11), 2007, 28-33.

Zhao, Jingbo, et al.: Efficient organic solar cells processed from hydrocarbon solvents. Nature Energy, 1, 2016, 15027.

Zhao, W., Qian, D., Zhang, S., Li, S., Inganäs, O., Gao, F., & Hou, J.: Fullerene‐Free Polymer Solar Cells with over 11% Efficiency and Excellent Thermal Stability. Advanced Materials, 28(23), 2016, 4734-4739.

Burschka, Julian, et al.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 2013, 316-319.

Shin, Seong Sik, et al.: Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science, 356(6334), 2017, 167-171.

Yamaguchi, M., Takamoto, T., Araki, K., & Ekins-Daukes, N.: Multi-junction III–V solar cells: current status and future potential. Solar Energy, 79(1), 2005, 78-85.

Dimroth, F., Grave, M., Beutel, P., Fiedeler, U., Karcher, C., Tibbits, T. N., & Bett, A. W.: Wafer bonded four-junction GaInP/GaAs//GaInAsP/ GaInAs concentrator solar cells with 44.7% efficiency. Progress in Photovoltaics: Research and Applications, 22(3), 2014, 277-282.

Kamat, Prashant V.: Quantum dot solar cells. The next big thing in photovoltaics. The journal of physical chemistry letters, 4(6), 2013, 908-918.

Zheng, Z., Ji, H., Yu, P., & Wang, Z.: Recent progress towards quantum dot solar cells with enhanced optical absorption. Nanoscale research letters, 11(1), 2016, 1-8.




DOI: http://dx.doi.org/10.22385/jctecs.v20i0.277