
Journal of Communications Technology, Electronics and Computer Science, Issue 8, 2016

ISSN 2457-905X

5

The Effectiveness of the Fused Weighted Filter

Feature Selection Method to Improve Software Fault

Prediction

Fatemeh Alighardashi, Mohammad Ali Zare Chahooki

Engineering Faculty, Computer Engineering Department, Yazd University

Yazd, Iran

F.Alighardashi@stu.yazd.ac.ir, Chahooki@yazd.ac.ir

Abstract—improving the software product quality before

releasing by periodic tests is one of the most expensive activities

in software projects. Due to limited resources to modules test in

software projects, it is important to identify fault-prone modules

and use the test sources for fault prediction in these modules.

Software fault predictors based on machine learning algorithms,

are effective tools for identifying fault-prone modules. Extensive

studies are being done in this field to find the connection between

features of software modules, and their fault-prone. Some of

features in predictive algorithms are ineffective and reduce the

accuracy of prediction process. So, feature selection methods to

increase performance of prediction models in fault-prone

modules are widely used. In this study, we proposed a feature

selection method for effective selection of features, by using

combination of filter feature selection methods. In the proposed

filter method, the combination of several filter feature selection

methods presented as fused weighed filter method. Then, the

proposed method caused convergence rate of feature selection as

well as the accuracy improvement. The obtained results on

NASA and PROMISE with ten datasets, indicates the

effectiveness of proposed method in improvement of accuracy

and convergence of software fault prediction.

Keywords—Software fault prediction; Feature selection; Filter

method; Machine learning

I. INTRODUCTION

Improving software product quality before releasing by
periodic tests is one of the most expensive activities in software
projects. Before system testing, identifying faults-prone
components, improves effectiveness of efforts in software
testing. The most faults in any software system are caused by a
few of its components. The „„80:20‟‟ rule in this area indicates
that 20% of software modules may cause errors, cost and
rework in the remaining 80% of them. So, it will be wasted
little time in the whole production process by trying to
eliminate error and improve the quality of a small part of
software [1]. Due to limited resources in test activities of
software projects, it is important to identify fault-prone
modules and use the test resources for fault prediction in them.
Software fault predictors based on machine learning

algorithms, are effective tools for identifying faults-prone
modules [2].

Binary classifier is the main model which classifies the
software modules to two-class fault-prone and non-fault-prone
ones. Ranking models, sort the modules based on their fault-
prone probability. Therefore, the process of reliability
improvement in software products can be done more
effectively with an optimized allocation of the project
resources to predict fault-prone modules.

So far, numerous machine learning methods for software
fault prediction has been used [3, 4]. These methods include:
Bayesian Network classifier [5, 6, 7], Discriminant Analysis
[7], Logistic Regression [8, 9], C4.5 [7, 8], CART [7, 8],
Neural Networks [7, 8, 10] and Support Vector Machine
(SVM) [11, 12, 13].

Feature selection is one of the approaches to improve the

accuracy and speed of machine learning algorithms [14]. In

recent years, the feature selection is used in many applications
of software engineering. Using of these methods has been
growing in the field of software quality prediction, and
especially in the software fault prediction [15, 16, 17, 18,19
20].

Research results of feature reduction have indicated that a
sub-set of features can improve the accuracy of the machine
learning algorithms. Combination of basic feature selection
methods is the approach that recently has been suggested in
this area.

In [21], the effect of the combination of feature selection
methods and ensemble learning about the effectiveness of these
methods is evaluated for predicting the fault in the software
modules. The idea of the ensemble learning method has been
proposed in this paper and for assessment of the impact of the
feature selection methods on performance of the ensemble
learning method also have been used from three methods such
as greedy forward selection (GFS), Pearson‟s correlation
method and Fisher‟s criterion (F-score).

In [22] represent a combination of the meta-heuristic
optimization techniques (the genetic algorithms (GA) and the

Journal of Communications Technology, Electronics and Computer Science, Issue 8, 2016

ISSN 2457-905X

6

particle swarm optimization (PSO)) and the Bagging methods
for improving the accuracy of software fault prediction. The
meta-heuristic optimization techniques are wrapper methods
that these methods are used for feature selection, and the
Bagging methods for tackling of the class unbalance problem
are used. Using of the meta-heuristic optimization techniques
are employed for increasing the ability of finding the highest
quality solutions in the reasonable time frame. The purpose of
this study of the above, selecting methods for feature selection
is improvement of the accuracy. In other words, the speed
factor is not the main purpose of this paper, so the filter
methods have not been used in the feature selection process.
The proposed idea of most studies on software fault prediction
is limited to solving the problem of class unbalance or
selecting the features individually. But this study combines two
problems with each other and represents as a comprehensive
approach.

In [23], the framework for classification of software
modules which is named FECAR is presented. In this
framework, from features clustering and ranking them for
feature selection is used. Firstly the proposed method divides
the basic features into k clusters based on correlation criterion,
and then the most relevant features of each cluster are selected
based on their relevancy. In this study the Symmetric
Uncertainty method is used as the correlation measure. Also,
three filter feature selection methods such as Information Gain
(IG), Chi-Square (CS) and ReliefF (RF) have been used as a
relevant measure.

In this paper, a combination of some of the filters features
selection approaches are used to improve the accuracy and the
convergence speed of the basic feature selection methods. The
proposed method is a weighted combination of basic filter
feature selection methods. Results show the effectiveness of
the proposed method in improvement of accuracy and speed of
software fault prediction.

The rest of the article is sectioned as follows: In Section 2,
first, the feature selection methods are described. In Section 3,
the proposed feature selection method is described. Dataset and
evaluation criteria in this study are described in Section 4.
Experimental implementation results of proposed method and
comparison with other researches are given in Section 5.
Finally, conclusions and future researches are described in
Section 6.

II. FEATURE SELECTION METHODS

Feature selection, is one of the techniques that has been
raised widely in machine learning. This method is very
important in many applications, such as classification and
regression. In the feature selection, we want to find the subset
of features with the minimum possible size that is suitable for
the learning process.

Feature selection methods are trying to find the best subset
from a set with N features and 2N candidate of subsets. In all
these methods, the subset is selected as the solution that could
be optimized the value of evaluation function. Although each
of the methods is trying to choose the best features, but the

extent of the given possible solutions for finding the optimal
solution is difficult and costly for medium and large values of
N.

Feature selection is one of the approaches to improve the

accuracy and speed of machine learning algorithms [24]. In

recent years, many of the studies in feature selection on
software fault prediction have been done.

A feature selection algorithm can be a combination of
search techniques that provide a new subset of features with an
evaluation criterion which score distinct subsets. The easiest
method to test any proper subset of the features finds a subset
that decreases the error rate [14].

In this paper, filter feature selection methods have been used to
present proposed method. Filter feature selection methods have
been used as a candidate criterion for scoring to a subset of
features. These methods choose a subset of features without
using any machine learning algorithm. In other words, in these
methods, independent of machine learning algorithms, subsets
of features have been selected by other concepts and
competencies of them are evaluated. In these methods,
according to the candidate criteria, each feature is scored, and
based on scores, features are sorted as ascending, descending
or random. In this paper, five filter methods such as Fisher
Score, Gini Index, Kruskal Wallis, Minimum-Redundancy-
Maximum-Relevance (mRmR) and Ttest from [25] have been
used to present proposed combination filter method. These
methods are briefly introduced In Table 1 and also the
variables of these methods are briefly introduced In Table 2.

TABLE 1: FIVE FILTER METHODS HAVE BEEN USED TO PRESENT

PROPOSED METHOD

Filter

methods
Equations

Fisher
Score

 
 

2

,1

2

,1

c

j i j ij

i c

j i jj

n
FisherScore f

n

 













Gini Index   2

1

1 [(|)]
c

i

GiniIndex f p i f


 

Kruskal
Wallis

2 2

1 1

12 1 12
() () 3(1)

(1) 2 (1)

g g

i i i i

i i

N
K n r n r N

N N N N 


    

 
 

mRmR

Minimize Redundancy:

2

,

1
, (,)I I

i j S

minW W I i j
s 

 

Maximize Relevance:

1
, (,)I I

i S

maxV V I h i
S 

 

   
 

;
(,)

,
()

m

m
I S h m m

m

p S h
p S h log dS dh

p S p h
  

Ttest

(t-score)

i j

22
ji

i j

tR

n n

 








Journal of Communications Technology, Electronics and Computer Science, Issue 8, 2016

ISSN 2457-905X

7

TABLE 2: THE VARIABLES OF FILTER METHODS HAVE BEEN USED TO

PRESENT PROPOSED COMBINATION FILTER METHOD
The

variables
Description

The

variables
Description

f the feature ni

number of

observations in group

„i‟

i

the mean of the feature
fi

rij
rank of observation 'j'
in the group „i‟

nj
the number of samples
in the jth class ir

1

in

ijj

i

i

r
r

n





, i j

the mean of fi on class j r
the average rank of all

the observations

,i j

the variance of fi on

class j
S the set of features

c the number of classes I(i, j)

mutual information

between features i and

j

N
the total number of
observations across all

groups

h target classes

III. PROPOSED METHOD

In the proposed method, feature selection is done by our
fused weighted filter (WF) method. In different filter methods,
according to the candidate criteria considered by them, scoring
of features can be different. The score of each feature is
actually featured weighs that it determines the position of them
in the ranked list of features arranged by any filter method. In
some filter methods, if the weight assigned to the features is
more, it is diagnosed more relevant feature and is ranked
higher in the list. In other filter methods higher position in the
list of its features is to feature with less weight. Also, some
filter methods are based on complex relationships for sorting a
list of features based on their weight. Our proposed idea for
fusing of filter methods is according to the following steps:

1) Features according to the priority of each feature in the
list that is sorted by any of the filter methods, are re-
weighted (higher priority in the list = more weight). The
weights are then normalized.

2) Weight is calculated for each filter method based on their
success in effectively prioritize features by evaluation
score from training and validation samples. At this stage,
we prioritize training database features by using of any of
the filter methods and evaluate the accuracy of filter
methods by the validate section. Then arrange methods
based on their success rate and the method is the least
accurate weight 0.1 is assigned. The other methods based
on the difference in its accuracy over the previous
methods, weighs "the weight difference divided by 10
and added to the previous method of weight" assigned.
For example, the method that its accuracy is 5% more
than the method that the weight is 0.1, weight 0.6 is
assigned.

3) The weight of each feature multiplied by the weight of
each filter method (new weighting to each of the
features). Then the sum of the weights of features in each
filter method is calculated and divided by the total

number of filter methods. Therefore, if a feature is shown
by x and W show also feature original weight. As well as

the number of filter methods have M and .jfm W

represents the weight of the j-th filter method. The final
weight by the equation (1) is calculated.

1
. .

.

M

jj
fm W xW

x NewW
M





 (1)

IV. EMPIRICAL LAYOUT

In this section, first we introduce the datasets that are
discussed in this assessment. Then the criteria that reflect the
accuracy of predicting fault in software modules are
introduced. The criteria used in this study are selected so the
results of this research are comparable with other studies in this
area.

In evaluating the effectiveness of the proposed method for
predicting the fault in software modules to set of datasets (ten
datasets) consist of NASA and PROMISE are used. The
datasets are freely available in the PROMISE Repository. In all
of these datasets, the latest feature is the class label of each
sample. In this feature, the value 0 represents module is not
fault-prone and other value indicating the fault-prone. Table 3
indicates the characteristics of each dataset.

TABLE 3: CHARACTERISTICS OF PROMISE AND NASA DATASETS

The features of each dataset include different levels of
granularity. NASA and PROMISE dataset, respectively, are in
module and class level. All PROMISE samples include 20
features that are briefly described in Table 4. NASA samples
also include a different number of features which are shown in
Table 5.

TABLE 4: LIST OF FEATURES IN PROMISE DATASETS

Description Name Feature

Weighted Methods per Class WMC x1

Depth of Inheritance Tree DIT x2

Number Of Children NOC x3

Coupling Between Object classes CBO x4

Response For a Class RFC x5

Lack of Cohesion in Methods LCOM x6

Afferent Couplings CA x7

% of

defective

modules

of

modules

of

features
Language Version Dataset

22.3 745 20 Java 1.7 Ant

19.5 965 20 Java 1.6 Camel

2.24 494 20 Java 4.3 Jedit

59.7 340 20 Java 2.4 Lucene

9 858 20 Java 6.0 Tomcat

9.83 498 21 C - CM1

32.30 161 39 C++ - MC2

7.69 403 37 C - MW1

6.94 1109 21 C - PC1

20.5 778 37 C - PC2

Journal of Communications Technology, Electronics and Computer Science, Issue 8, 2016

ISSN 2457-905X

8

Efferent Couplings CE x8

Number of public Methods NPM x9

Normalized version of LCOM LCOM3 x1.

Line Of Code LOC x11

Data Access Metric DAM x12

Measure Of Aggregation MOA x13

Measure of Functional Abstraction MFA x14

Cohesion Among Methods CAM x15

Inheritance Coupling IC x16

Coupling Between Methods CBM x17

Average Method Complexity AMC x18

Maximum values of methods in the same class MAX_CC x19

Mean values of methods in the same class AVG_CC x2.

Non-buggy or buggy Bug -

TABLE 5: LIST OF FEATURES IN NASA DATASETS
PC2 PC1 MW1 MC2 CM1 Description Feature

× × × × × Line count of code x1

× × × × × McCable‟s cyclomatic complexity x2

× × × × × McCable‟s essential complexity x3

× × × × × McCable‟s design complexity x4

× × × × × Total number of operators x5

× × × × × Total number of operands x6

× × × × × Number of unique operators x7

× × × × × Number of unique operands x8

× × × × × Number of unique operators and operands x9

× × × × × Halstead‟s volume x1.

× × × × × Halstead‟s difficult x11

× × × × × Halstead‟s length x12

× × × × × Halstead‟s content x13

× × × × × Halstead‟s effort x14

× × × × × Halstead‟s error estimate x15

× × × × × Halstead‟s programing time x16

× × × × × Number of blank lines x17

× × × × × Number of comment-only lines x18

 × × Number of code-only lines x19

× × × × × Number of lines with both code and comments x2.

× × × × × Number of branches x21

× × × Number of condition x22

× × × Call pairs x23

× × × Cyclomatic density x24

× × × Number of decision x25

× × × Decision density x26

× × × Design density x27

× × × Number of edge x28

× × × Essential density x29

× × × LOC executable x30

× × × Number of parameter x31

 × Global data complexity x32

 × Global data density x33

× × × Halstead‟s level x34

× × × Maintenance severity x35

× × × Number of modified condition x36

× × × Number of multiple condition x37

× × × Number of node x38

× × × Normalized cyclomatic complexity x39

× × × Percent comments x40

37 21 37 39 21 Number of features

Journal of Communications Technology, Electronics and Computer Science, Issue 8, 2016

ISSN 2457-905X

9

One of the effective factors in comparison of the model
with the other models is evaluated with the appropriate
measures. Software fault prediction datasets are unbalance, the
best evaluation criteria for assessment of the accuracy of the
classifier for this type of datasets are AUC [26] and f-measure
[11]. AUC criterion is given in Equation 2

In this criterion, TPr and FPr are calculated as follows:

r

TP
TP

TP FN




r

FP
FP

FP TN




F-measure criterion is given in Equation 3.

(3) 2

2

TP
F measure

TP FP FN


 

  

In Equations 2 and 3, four criteria TP, FP, TN and FN are
used. TP , is the number of the faulty modules, which is
predicted correctly as fault-prone; FP , is the number of
nonfaulty modules, that incorrectly have been predicted as
fault-prone; TN , is the number of nonfaulty modules, which
have predicted correctly as the nonfault-prone, and the FN also
has a number of faulty modules, which incorrectly have been
predicted as nonfault-prone.

V. RESULTS AND DISCUSSION

In this section, first the results of the implementation of the
proposed method on software fault prediction datasets will be
represented. Then the results of this paper and the other recent
studies in this area have been compared.

The datasets are used in this paper, first were divided into
training data and test data (90 percent for training and 10
percent for the test). For selecting the optimal parameters of the
proposed method 10-fold cross-validation method is used. Also
for classifying the software modules into two classes fault-
prone and none fault-prone, Smooth Twin Parametric-Margin
SVM (STPMSVM) [27] method is employed.

Filter methods only return an ordered list of the most
relevant features as output. So validating is required for
selecting the top k feature of the list for all of the filter
methods. So by using of training and validation data, the
optimal value of k is calculated for each of the filter methods.
Due to the optimal k, percentage of features that is chosen by
each of the filter methods is shown in Table 6 and Table 7.

According to Table 6, the percentage of selected features of
each datasets by Our proposed WF method is about 53% (by
AUC criterion). The results represent that this method in
comparison to five other filter methods (except of Fisher Score
method) requires to the average of few features.

TABLE 6: PERCENTAGE OF SELECTED FEATURES BY AUC CRITERION

Datasets
WF

method

Filter Methods

Fisher

Score

Gini

Index

Kruskal

Wallis
mRmR Ttest

Ant 90 90 95 95 90 90

Camel 65 80 85 55 80 100

Jedit 10 65 75 15 65 100

Lucene 75 15 15 80 10 30

Tomcat 10 15 15 70 15 75

CM1 38.09 14.28 33.33 23.8 33.33 90.47

MC2 56.41 48.71 53.84 71.79 66.66 79.48

MW1 81.08 75.67 81.08 94.59 89.18 72.97

PC1 23.80 19.04 23.80 90.47 95.23 71.42

PC2 81.08 59.45 54.05 75.67 89.18 56.75

Average 53.05 48.22 53.11 67.13 63.36 76.61

TABLE 7: PERCENTAGE OF SELECTED FEATURES BY F-MEASURE

CRITERION

Datasets
WF

method

Filter Methods

Fisher

Score

Gini

Index

Kruskal

Wallis

mRmR Ttest

Ant 90 90 95 95 90 90

Camel 65 85 80 50 85 100

Jedit 10 65 75 15 65 100

Lucene 45 25 25 10 20 45

Tomcat 60 70 70 95 80 75

CM1 80.95 14.28 47.61 23.8 33.33 90.47

MC2 56.41 48.71 53.84 71.79 66.66 79.48

MW1 5.40 75.67 81.08 94.59 89.18 5.40

PC1 76.19 76.19 76.19 57.14 80.95 85.71

PC2 81.08 59.45 54.05 75.67 89.18 56.75

Average 57.00 60.93 65.78 58.80 69.93 72.78

The implementation results of five filter feature selection
methods and the proposed fused weighted filter method on
software fault prediction datasets is shown in table 8 and table
9. In last two rows of these tables, the average and standard
deviation of each of the filter methods on all datasets are given.
This comparison shows that the fused weighted filter method in
the different datasets has better results rather than the other
filter methods. The implementation results of the proposed
method on software fault prediction datasets compare with
using of all features are shown in table 10. The proposed
method results graph is shown in Fig. 1.

TABLE 8: THE RESULT OF PROPOSED WF METHOD AND OTHER FILTER

METHODS ON TEN DATASETS BY AUC CRITERIA

Datasets
WF

method

Filter Methods

Fisher

Score

Gini

Index

Kruskal

Wallis
mRmR Ttest

Ant 0.88 0.88 0.88 0.88 0.88 0.88

Camel 0.70 0.69 0.64 0.60 0.76 0.66

Jedit 0.87 0.84 0.85 0.96 0.83 0.83

Lucene 0.66 0.66 0.57 0.66 0.45 0.51

Tomcat 0.85 0.76 0.76 0.83 0.88 0.82

CM1 0.80 0.87 0.84 0.83 0.90 0.87

MC2 0.83 0.78 0.83 0.74 0.8. 0.83

MW1 0.91 0.89 0.91 0.89 0.91 0.89

PC1 0.87 0.77 0.80 0.82 0.89 0.76

PC2 0.97 0.98 0.96 0.97 0.97 0.92

Average 0.83 0.81 0.8. 0.81 0.82 0.79

standard

deviation
0.09 0.10 0.12 0.12 0.15 0.13

(2) 1

2

r rTP FP
AUC

 


Journal of Communications Technology, Electronics and Computer Science, Issue 8, 2016

ISSN 2457-905X

10

TABLE 9: THE RESULT OF PROPOSED WF METHOD AND OTHER FILTER

METHODS ON TEN DATASETS BY F-MEASURE CRITERIA

Datasets
WF

method

Filter Methods

Fisher

Score

Gini

Index

Kruskal

Wallis
mRmR Ttest

Ant 0.76 0.76 0.76 0.76 0.76 0.76

Camel 0.46 0.45 0.43 0.38 0.51 0.42

Jedit 0.14 0.12 0.13 0.33 0.11 0.11

Lucene 0.75 0.73 0.73 0.63 0.63 0.75

Tomcat 0.55 0.55 0.52 0.46 0.55 0.55

CM1 0.42 0.42 0.31 0.35 0.47 0.42

MC2 0.77 0.71 0.77 0.67 0.83 0.77

MW1 0.67 0.33 0.33 0.33 0.33 0.67

PC1 0.47 0.47 0.57 0.32 0.47 0.57

PC2 0.33 0.40 0.25 0.33 0.33 0.14

Average 0.53 0.49 0.48 0.45 0.49 0.51

standard

deviation
0.20 0.20 0.23 0.17 0.21 0.24

TABLE 10: THE RESULT OF PROPOSED WF METHOD ON TEN DATASETS

Datasets

AUC F-measure

All

features
WF method

All

features
WF method

Ant 0.82 0.88 0.70 0.76

Camel 0.66 0.70 0.42 0.46

Jedit 0.83 0.87 0.11 0.14

Lucene 0.61 0.66 0.60 0.75

Tomcat 0.80 0.85 0.52 0.55

CM1 0.64 0.80 0.22 0.42

MC2 0.81 0.83 0.70 0.77

MW1 0.89 0.91 0.46 0.67

PC1 0.81 0.87 0.54 0.47

PC2 0.91 0.97 0.33 0.33

Average 0.78 0.83 0.46 0.53

FIG 1: AUC CURVE DIAGRAM OF THE PROPOSED METHOD

FIG 2: F-MEASURE CURVE DIAGRAM OF THE PROPOSED METHOD

Implementation of the proposed WF feature selection
method on each dataset, causing a set of final features.
According to experiment results, features x5 and x11 in the
NASA dataset and features x1, x2, x6, x9, x18, x31 and x36 in
the PROMISE dataset are the most effective features to
improve the prediction accuracy of faults in software modules.

The results of this paper for PROMISE datasets in Table 11
and for NASA datasets in Table 12 has been compared with the
results of other papers by AUC criteria. Also the results of this
paper for NASA datasets in Table 13 have been compared with
the results of other papers by F-measure criteria. In each paper,
by several methods, better accuracy is reported. Finally, for
each of dataset, the best accuracies are highlighted in the table
11, table 12 and table 13.

TABLE 11: COMPARE THE RESULT OF THIS PAPER WITH THE RESULT OF

OTHER PAPERS ON PROMISE DATASETS BY AUC CRITERIA

Paper Method Ant Camel Jedit Lucene Tomcat

This

paper
WF method 0.88 0.70 0.87 0.66 0.85

[6] BNET .082 - 0.66 0.63 0.77

[21]

Enhanced APE 0.86 0.80 - - -

Enhanced W-
SVM

0.80 0.69 - - -

Enhanced RF 0.82 0.72 - - -

TABLE 12: COMPARE THE RESULT OF THIS PAPER WITH THE RESULT OF

OTHER PAPERS ON NASA DATASETS BY AUC CRITERIA

Paper Method CM1 MC2 MW1 PC1 PC2

This

paper
WF method 0.80 0.83 0.91 0.87 0.97

[21]

Enhanced
APE

- - - - 0.95

Enhanced

W-SVM
- - - - 0.94

Enhanced
RF

- - - - 0.85

[22]

LR + PSO

+ Bag
0.74 0.78 0.75 0.85 0.83

NB + PSO
+ Bag

0.76 0.73 0.75 0.79 0.82

CART +

PSO + Bag
0.61 0.68 0.68 0.83 0.79

NN BP 0.71 0.71 0.62 0.78 0.92

[23]

NB + CIG 0.78 0.71 0.79 0.78 -

NB + CRF 0.76 0.70 0.77 0.72 -

NB + CFS 0.76 0.66 0.78 0.79 -

[28]

SVM - - - 0.73 0.65

CSSVM - - - 0.81 0.75

GA-
CSSVM

- - - 0.83 0.80

TABLE 13: COMPARE THE RESULT OF THIS PAPER WITH THE RESULT OF

OTHER PAPERS ON NASA DATASETS BY F-MEASURE CRITERIA

Paper Method CM1 MC2 MW1 PC1 PC2

This
paper

Proposed

WF

method
0.42 0.77 0.67 0.47 0.33

[11]

DT 0.21 0.56 0.20 0.27 0.00

KNN 0.13 0.57 0.23 0.43 0.00

NB 0.24 0.50 0.00 0.33 0.05

SVM 0.00 0.48 0.07 0.00 0.00

R-SVM 0.35 0.57 0.46 0.39 0.01

Journal of Communications Technology, Electronics and Computer Science, Issue 8, 2016

ISSN 2457-905X

11

The results shown that using the proposed WF method not
only improves the speed of selecting features, But also has a
significant impact on improving the accuracy of the fault
prediction in the software modules.

VI. CONCLUSION AND FUTURE WORK

In this paper due to the advantages and disadvantages of the
filter feature selection methods, we use the combination of
these methods to select the best features for predicting the fault
of software modules. We achieved a suitable combined method
for feature selection bdy the mixture of the feature selection
methods. Then, this method is evaluated on the variety datasets
of the software fault prediction. The results show the
effectiveness of the used method. Therefore, our proposed WF
method can find the best features with the highest speed for the
improvement of the fault prediction accuracy. In this research,
we use the five filter methods. In future we intend to work on
the other combination of feature selection methods.

REFERENCES

[1] G. Iker, “Applying machine learning to software fault-proneness
prediction,” J. Syst. Softw., vol. 81, no. 2, pp. 186–195, 2008.

[2] E. Rashid, S. Patnaik, and A. Usmani, “Machine Learning and Its

Application in Software Fault Prediction with Similarity
Measures,” In Computational Vision and Robotics, pp. 37-45,

Springer India, 2015.

[3] R. Malhotra, “A systematic review of machine learning techniques
for software fault prediction,” Appl. Soft Comput., pp. 504–518,

2015.

[4] B. Ghotra, S. Mcintosh, and A. E. Hassan, “Revisiting the Impact
of Classification Techniques on the Performance of Defect

Prediction Models,” in Proc. of the 37th Int‟l Conf. on Software

Engineering (ICSE), 2015.
[5] K. Dejaeger, T. Verbraken, and B. Baesens, “Toward

Comprehensible Software Fault Prediction Models Using Bayesian

Network Classifiers,” IEEE Trans. Softw. Eng., vol. 39, no. 2, pp.
237–257, 2013.

[6] A. Okutan, and O. Yıldız, “Software defect prediction using

Bayesian networks,” Empirical Software Engineering, vol. 19, no.
1, pp. 154-181, 2014.

[7] S. Lessmann, B. Baesens , C. Mues, and S. Pietsch,

“Benchmarking classification models for software defect
prediction: a proposed framework and novel findings,” Softw.

Eng. IEEE Trans., vol. 34, no. 4, pp. 485–496, 2008.

[8] R. Malhotra, and A. Jain, “Fault prediction using statistical and
machine learning methods for improving software quality,” JIPS,

vol. 8, no. 2, pp. 241–262, 2012.
[9] A. Monden, T. Hayashi, S. Shinoda, K. Shirai, J. Yoshida, M.

Barker, and K. Matsumoto, “Assessing the cost effectiveness of

fault prediction in acceptance testing,” Softw. Eng. IEEE Trans.,
vol. 39, no. 10, pp. 1345–1357, 2013.

[10] J. Zheng, “Cost-sensitive boosting neural networks for software

defect prediction,” Expert Syst. Appl., vol. 37, no. 6, pp. 4537–
4543, 2010.

[11] T. Choeikiwong and P. Vateekul, “Software Defect Prediction in

Imbalanced Data Sets Using Unbiased Support Vector Machine,”

Inf. Sci. Appl. Springer Berlin Heidelb., vol. 339, pp. 923–931,

2015.

[12] A. H. Al-Jamimi, and L. Ghouti, “Efficient prediction of software
fault proneness modules using support vector machines and

probabilistic neural networks,” Software Engineering (MySEC),

2011, 5th Malaysian Conference in. IEEE, 2011.
[13] H. Can, X. Jianchun, Z. Ruide, L. Juelong, Y. Qiliang, and X.

Liqiang, “A new model for software defect prediction using

particle swarm optimization and support vector machine,” Control
and Decision Conference (CCDC), 2013, 25th Chinese. IEEE,

2013.

[14] G. Chandrashekar and F. Sahin, “A survey on feature selection
methods,” Comput. Electr. Eng., vol. 40, no. 1, pp. 16–28, 2014.

[15] K. Muthukumaran, R. Akhila, and N. L. Murthy. "Impact of

Feature Selection Techniques on Bug Prediction Models."
Proceedings of the 8th India Software Engineering Conference.

ACM, 2015.

[16] S. Shivaji, E. J. Whitehead, R. Akella, and S. Kim, “Reducing
features to improve code change-based bug prediction”. IEEE

Transactions on Software Engineering, 39(4), 552-569, 2013.

[17] K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya, “Choosing
software metrics for defect prediction: an investigation on feature

selection techniques”. Software: Practice and Experience, 41(5),

579-606, 2011.
[18] H. Wang, T. M. Khoshgoftaar, and A. Napolitano, “Software

measurement data reduction using ensemble techniques”.

Neurocomputing, 92, 124-132, 2012.
[19] H. Wang, T. M. Khoshgoftaar, and A. Napolitano, “A comparative

study of ensemble feature selection techniques for software defect

prediction”. In Machine Learning and Applications (ICMLA),
2010 Ninth International Conference on. IEEE, 135-140, 2010.

[20] A. Okutan, and O. T. Yıldız, "Software defect prediction using

Bayesian networks." Empirical Software Engineering 19.1 (2014):
154-181.

[21] Laradji, I. H., Alshayeb, M., & Ghouti, L. “Software defect

prediction using ensemble learning on selected features”.
Information and Software Technology, 58, 388-402, 2015.

[22] R. S. Wahono, N. Suryana, and S. Ahmad. "Metaheuristic

Optimization based Feature Selection for Software Defect

Prediction." Journal of Software 9.5 (2014): 1324-1333.

[23] S. Liu, X. Chen, W. Liu, J. Chen, Q. Gu, and D. Chen, “Fecar: A

feature selection framework for software defect prediction.”
Computer Software and Applications Conference (COMPSAC),

2014 IEEE 38th Annual. IEEE, 2014.

[24] G. Chandrashekar and F. Sahin, “A survey on feature selection
methods,” Comput. Electr. Eng., vol. 40, no. 1, pp. 16–28, 2014.

[25] Z. Zhao, F. Morstatter, S. Sharma, S. Alelyani, A. Anand, and H.

Liu, “Advancing feature selection research”. ASU feature selection
repository, 2010.

[26] D. Rodriguez, I. Herraiz, R. Harrison, J. Dolado, and J. C.
Riquelme, “Preliminary comparison of techniques for dealing with

imbalance in software defect prediction”. In Proceedings of the

18th International Conference on Evaluation and Assessment in
Software Engineering (p. 43). ACM, 2014.

[27] Z. Wang, Y. H. Shao, and T. R. Wu, “A GA-based model selection

for smooth twin parametric-margin support vector machine”.
Pattern Recognition, 46(8), 2267-2277, 2013.

[28] B. Shuai, H. Li, M. Li, Q. Zhang, and C. Tang, “Software defect
prediction using dynamic support vector machine,” Comput. Intell.
Secur. (CIS), 2013 9th Int. Conf., pp. 260-263, IEEE, 2013.

