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Abstract—improving the software product quality before 

releasing by periodic tests is one of the most expensive activities 

in software projects. Due to limited resources to modules test in 

software projects, it is important to identify fault-prone modules 

and use the test sources for fault prediction in these modules. 

Software fault predictors based on machine learning algorithms, 

are effective tools for identifying fault-prone modules. Extensive 

studies are being done in this field to find the connection between 

features of software modules, and their fault-prone. Some of 

features in predictive algorithms are ineffective and reduce the 

accuracy of prediction process. So, feature selection methods to 

increase performance of prediction models in fault-prone 

modules are widely used. In this study, we proposed a feature 

selection method for effective selection of features, by using 

combination of filter feature selection methods. In the proposed 

filter method, the combination of several filter feature selection 

methods presented as fused weighed filter method. Then, the 

proposed method caused convergence rate of feature selection as 

well as the accuracy improvement. The obtained results on 

NASA and PROMISE with ten datasets, indicates the 

effectiveness of proposed method in improvement of accuracy 

and convergence of software fault prediction. 

Keywords—Software fault prediction; Feature selection; Filter 

method; Machine learning 

I. INTRODUCTION  

Improving software product quality before releasing by 
periodic tests is one of the most expensive activities in software 
projects. Before system testing, identifying faults-prone 
components, improves effectiveness of efforts in software 
testing. The most faults in any software system are caused by a 
few of its components. The „„80:20‟‟ rule in this area indicates 
that 20% of software modules may cause errors, cost and 
rework in the remaining 80% of them. So, it will be wasted 
little time in the whole production process by trying to 
eliminate error and improve the quality of a small part of 
software [1]. Due to limited resources in test activities of 
software projects, it is important to identify fault-prone 
modules and use the test resources for fault prediction in them. 
Software fault predictors based on machine learning 

algorithms, are effective tools for identifying faults-prone 
modules [2].  

Binary classifier is the main model which classifies the 
software modules to two-class fault-prone and non-fault-prone 
ones. Ranking models, sort the modules based on their fault-
prone probability. Therefore, the process of reliability 
improvement in software products can be done more 
effectively with an optimized allocation of the project 
resources to predict fault-prone modules.  

So far, numerous machine learning methods for software 
fault prediction has been used [3, 4]. These methods include: 
Bayesian Network classifier [5, 6, 7], Discriminant Analysis 
[7], Logistic Regression [8, 9], C4.5 [7, 8], CART [7, 8], 
Neural Networks [7, 8, 10] and Support Vector Machine 
(SVM) [11, 12, 13].  

Feature selection is one of the approaches to improve the 

accuracy and speed of machine learning algorithms [14]. In 

recent years, the feature selection is used in many applications 
of software engineering. Using of these methods has been 
growing in the field of software quality prediction, and 
especially in the software fault prediction [15, 16, 17, 18,19 
20]. 

Research results of feature reduction have indicated that a 
sub-set of features can improve the accuracy of the machine 
learning algorithms. Combination of basic feature selection 
methods is the approach that recently has been suggested in 
this area.  

In [21], the effect of the combination of feature selection 
methods and ensemble learning about the effectiveness of these 
methods is evaluated for predicting the fault in the software 
modules. The idea of the ensemble learning method has been 
proposed in this paper and for assessment of the impact of the 
feature selection methods on performance of the ensemble 
learning method also have been used from three methods such 
as greedy forward selection (GFS), Pearson‟s correlation 
method and Fisher‟s criterion (F-score). 

In [22] represent a combination of the meta-heuristic 
optimization techniques (the genetic algorithms (GA) and the 
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particle swarm optimization (PSO)) and the Bagging methods 
for improving the accuracy of software fault prediction. The 
meta-heuristic optimization techniques are wrapper methods 
that these methods are used for feature selection, and the 
Bagging methods for tackling of the class unbalance problem 
are used. Using of the meta-heuristic optimization techniques 
are employed for increasing the ability of finding the highest 
quality solutions in the reasonable time frame. The purpose of 
this study of the above, selecting methods for feature selection 
is improvement of the accuracy. In other words, the speed 
factor is not the main purpose of this paper, so the filter 
methods have not been used in the feature selection process. 
The proposed idea of most studies on software fault prediction 
is limited to solving the problem of class unbalance or 
selecting the features individually. But this study combines two 
problems with each other and represents as a comprehensive 
approach. 

In [23], the framework for classification of software 
modules which is named FECAR is presented. In this 
framework, from features clustering and ranking them for 
feature selection is used. Firstly the proposed method divides 
the basic features into k clusters based on correlation criterion, 
and then the most relevant features of each cluster are selected 
based on their relevancy. In this study the Symmetric 
Uncertainty method is used as the correlation measure. Also, 
three filter feature selection methods such as Information Gain 
(IG), Chi-Square (CS) and ReliefF (RF) have been used as a 
relevant measure. 

In this paper, a combination of some of the filters features 
selection approaches are used to improve the accuracy and the 
convergence speed of the basic feature selection methods. The 
proposed method is a weighted combination of basic filter 
feature selection methods. Results show the effectiveness of 
the proposed method in improvement of accuracy and speed of 
software fault prediction. 

The rest of the article is sectioned as follows: In Section 2, 
first, the feature selection methods are described. In Section 3, 
the proposed feature selection method is described. Dataset and 
evaluation criteria in this study are described in Section 4. 
Experimental implementation results of proposed method and 
comparison with other researches are given in Section 5. 
Finally, conclusions and future researches are described in 
Section 6. 

II. FEATURE SELECTION METHODS 

Feature selection, is one of the techniques that has been 
raised widely in machine learning. This method is very 
important in many applications, such as classification and 
regression. In the feature selection, we want to find the subset 
of features with the minimum possible size that is suitable for 
the learning process. 

Feature selection methods are trying to find the best subset 
from a set with N features and 2N candidate of subsets. In all 
these methods, the subset is selected as the solution that could 
be optimized the value of evaluation function. Although each 
of the methods is trying to choose the best features, but the 

extent of the given possible solutions for finding the optimal 
solution is difficult and costly for medium and large values of 
N. 

Feature selection is one of the approaches to improve the 

accuracy and speed of machine learning algorithms [24]. In 

recent years, many of the studies in feature selection on 
software fault prediction have been done.  

A feature selection algorithm can be a combination of 
search techniques that provide a new subset of features with an 
evaluation criterion which score distinct subsets. The easiest 
method to test any proper subset of the features finds a subset 
that decreases the error rate [14]. 

In this paper, filter feature selection methods have been used to 
present proposed method. Filter feature selection methods have 
been used as a candidate criterion for scoring to a subset of 
features. These methods choose a subset of features without 
using any machine learning algorithm. In other words, in these 
methods, independent of machine learning algorithms, subsets 
of features have been selected by other concepts and 
competencies of them are evaluated. In these methods, 
according to the candidate criteria, each feature is scored, and 
based on scores, features are sorted as ascending, descending 
or random. In this paper, five filter methods such as Fisher 
Score, Gini Index, Kruskal Wallis, Minimum-Redundancy-
Maximum-Relevance (mRmR) and Ttest from [25] have been 
used to present proposed combination filter method. These 
methods are briefly introduced In Table 1 and also the 
variables of these methods are briefly introduced In Table 2. 

TABLE 1: FIVE FILTER METHODS HAVE BEEN USED TO PRESENT 

PROPOSED METHOD 
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TABLE 2: THE VARIABLES OF FILTER METHODS HAVE BEEN USED TO 

PRESENT PROPOSED COMBINATION FILTER METHOD 
The 

variables 
Description 

The 

variables 
Description 

f the feature ni 

number of 

observations in group 

„i‟ 

i  

the mean of the feature 
fi 

rij 
rank of observation 'j' 
in the group „i‟ 

nj 
the number of samples 
in the jth class ir  

1

in

ijj

i

i

r
r

n





 

,  i j
 

the mean of fi on class j r 
the average rank of all 

the observations 

,i j
 

the variance of fi on 

class j 
S the set of features 

c the number of classes I(i, j) 

mutual information 

between features i and 

j 

N 
the total number of 
observations across all 

groups 

h target classes 

III. PROPOSED METHOD 

In the proposed method, feature selection is done by our 
fused weighted filter (WF) method. In different filter methods, 
according to the candidate criteria considered by them, scoring 
of features can be different. The score of each feature is 
actually featured weighs that it determines the position of them 
in the ranked list of features arranged by any filter method. In 
some filter methods, if the weight assigned to the features is 
more, it is diagnosed more relevant feature and is ranked 
higher in the list. In other filter methods higher position in the 
list of its features is to feature with less weight. Also, some 
filter methods are based on complex relationships for sorting a 
list of features based on their weight. Our proposed idea for 
fusing of filter methods is according to the following steps: 

1) Features according to the priority of each feature in the 
list that is sorted by any of the filter methods, are re-
weighted (higher priority in the list = more weight). The 
weights are then normalized. 

2) Weight is calculated for each filter method based on their 
success in effectively prioritize features by evaluation 
score from training and validation samples. At this stage, 
we prioritize training database features by using of any of 
the filter methods and evaluate the accuracy of filter 
methods by the validate section. Then arrange methods 
based on their success rate and the method is the least 
accurate weight 0.1 is assigned. The other methods based 
on the difference in its accuracy over the previous 
methods, weighs "the weight difference divided by 10 
and added to the previous method of weight" assigned. 
For example, the method that its accuracy is 5% more 
than the method that the weight is 0.1, weight 0.6 is 
assigned. 

3) The weight of each feature multiplied by the weight of 
each filter method (new weighting to each of the 
features). Then the sum of the weights of features in each 
filter method is calculated and divided by the total 

number of filter methods. Therefore, if a feature is shown 
by x and W show also feature original weight. As well as 

the number of filter methods have M and .jfm W  

represents the weight of the j-th filter method. The final 
weight by the equation (1) is calculated. 

1
.     .

.

M

jj
fm W xW

x NewW
M





  (1) 

IV. EMPIRICAL LAYOUT 

In this section, first we introduce the datasets that are 
discussed in this assessment. Then the criteria that reflect the 
accuracy of predicting fault in software modules are 
introduced. The criteria used in this study are selected so the 
results of this research are comparable with other studies in this 
area. 

In evaluating the effectiveness of the proposed method for 
predicting the fault in software modules to set of datasets (ten 
datasets) consist of NASA and PROMISE are used. The 
datasets are freely available in the PROMISE Repository. In all 
of these datasets, the latest feature is the class label of each 
sample. In this feature, the value 0 represents module is not 
fault-prone and other value indicating the fault-prone. Table 3 
indicates the characteristics of each dataset. 

TABLE 3: CHARACTERISTICS OF PROMISE AND NASA DATASETS 

The features of each dataset include different levels of 
granularity. NASA and PROMISE dataset, respectively, are in 
module and class level. All PROMISE samples include 20 
features that are briefly described in Table 4. NASA samples 
also include a different number of features which are shown in 
Table 5. 

TABLE 4: LIST OF FEATURES IN PROMISE DATASETS  

Description Name Feature 

Weighted Methods per Class WMC x1 

Depth of Inheritance Tree DIT x2 

Number Of Children NOC x3 

Coupling Between Object classes CBO x4 

Response For a Class RFC x5 

Lack of Cohesion in Methods LCOM x6 

Afferent Couplings CA x7 

% of 

defective 

modules 

# of 

modules 

# of 

features 
Language Version Dataset 

22.3 745 20 Java 1.7 Ant 

19.5 965 20 Java 1.6 Camel 

2.24 494 20 Java 4.3 Jedit 

59.7 340 20 Java 2.4 Lucene 

9 858 20 Java 6.0 Tomcat 

9.83 498 21 C - CM1 

32.30 161 39 C++ - MC2 

7.69 403 37 C - MW1 

6.94 1109 21 C - PC1 

20.5 778 37 C - PC2 
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Efferent Couplings CE x8 

Number of public Methods NPM x9 

Normalized version of LCOM LCOM3 x1. 

Line Of Code LOC x11 

Data Access Metric DAM x12 

Measure Of Aggregation MOA x13 

Measure of Functional Abstraction MFA x14 

Cohesion Among Methods CAM x15 

Inheritance Coupling IC x16 

Coupling Between Methods CBM x17 

Average Method Complexity AMC x18 

Maximum values of methods in the same class MAX_CC x19 

Mean values of methods in the same class AVG_CC x2. 

Non-buggy or buggy Bug - 

TABLE 5: LIST OF FEATURES IN NASA DATASETS 
PC2 PC1 MW1 MC2 CM1 Description Feature 

× × × × × Line count of code x1 

× × × × × McCable‟s cyclomatic complexity x2 

× × × × × McCable‟s essential complexity x3 

× × × × × McCable‟s design complexity x4 

× × × × × Total number of operators x5 

× × × × × Total number of operands x6 

× × × × × Number of unique operators x7 

× × × × × Number of unique operands x8 

× × × × × Number of unique operators and operands x9 

× × × × × Halstead‟s volume x1. 

× × × × × Halstead‟s difficult x11 

× × × × × Halstead‟s length x12 

× × × × × Halstead‟s content x13 

× × × × × Halstead‟s effort x14 

× × × × × Halstead‟s error estimate x15 

× × × × × Halstead‟s programing time x16 

× × × × × Number of blank lines x17 

× × × × × Number of comment-only lines x18 

 ×   × Number of code-only lines x19 

× × × × × Number of lines with both code and comments x2. 

× × × × × Number of branches x21 

×  × ×  Number of condition x22 

×  × ×  Call pairs x23 

×  × ×  Cyclomatic density x24 

×  × ×  Number of decision x25 

×  × ×  Decision density x26 

×  × ×  Design density x27 

×  × ×  Number of edge x28 

×  × ×  Essential density x29 

×  × ×  LOC executable x30 

×  × ×  Number of parameter x31 

   ×  Global data complexity x32 

   ×  Global data density x33 

×  × ×  Halstead‟s level x34 

×  × ×  Maintenance severity x35 

×  × ×  Number of modified condition x36 

×  × ×  Number of multiple condition x37 

×  × ×  Number of node x38 

×  × ×  Normalized cyclomatic complexity x39 

×  × ×  Percent comments x40 

37 21 37 39 21 Number of features 
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One of the effective factors in comparison of the model 
with the other models is evaluated with the appropriate 
measures. Software fault prediction datasets are unbalance, the 
best evaluation criteria for assessment of the accuracy of the 
classifier for this type of datasets are AUC [26] and f-measure 
[11]. AUC criterion is given in Equation 2 

In this criterion, TPr and FPr are calculated as follows: 

r

TP
TP

TP FN



 

r

FP
FP

FP TN




 

F-measure criterion is given in Equation 3. 

(3) 2

2

TP
F measure

TP FP FN


 

  
 

In Equations 2 and 3, four criteria TP, FP, TN and FN are 
used. TP , is the number of the faulty modules, which is 
predicted correctly as fault-prone; FP , is the number of 
nonfaulty modules, that incorrectly have been predicted as 
fault-prone; TN , is the number of nonfaulty modules, which 
have predicted correctly as the nonfault-prone, and the FN  also 
has a number of faulty modules, which incorrectly have been 
predicted as nonfault-prone. 

V. RESULTS AND DISCUSSION 

In this section, first the results of the implementation of the 
proposed method on software fault prediction datasets will be 
represented. Then the results of this paper and the other recent 
studies in this area have been compared. 

The datasets are used in this paper, first were divided into 
training data and test data (90 percent for training and 10 
percent for the test). For selecting the optimal parameters of the 
proposed method 10-fold cross-validation method is used. Also 
for classifying the software modules into two classes fault-
prone and none fault-prone, Smooth Twin Parametric-Margin 
SVM (STPMSVM) [27] method is employed. 

Filter methods only return an ordered list of the most 
relevant features as output. So validating is required for 
selecting the top k feature of the list for all of the filter 
methods. So by using of training and validation data, the 
optimal value of k is calculated for each of the filter methods. 
Due to the optimal k, percentage of features that is chosen by 
each of the filter methods is shown in Table 6 and Table 7. 

According to Table 6, the percentage of selected features of 
each datasets by Our proposed WF method is about 53% (by 
AUC criterion). The results represent that this method in 
comparison to five other filter methods (except of Fisher Score 
method) requires to the average of few features. 

TABLE 6: PERCENTAGE OF SELECTED FEATURES BY AUC CRITERION 

Datasets 
WF 

method 

Filter Methods 

Fisher 

Score 

Gini 

Index 

Kruskal 

Wallis 
mRmR Ttest 

Ant 90 90 95 95 90 90 

Camel 65 80 85 55 80 100 

Jedit 10 65 75 15 65 100 

Lucene 75 15 15 80 10 30 

Tomcat 10 15 15 70 15 75 

CM1 38.09 14.28 33.33 23.8 33.33 90.47 

MC2 56.41 48.71 53.84 71.79 66.66 79.48 

MW1 81.08 75.67 81.08 94.59 89.18 72.97 

PC1 23.80 19.04 23.80 90.47 95.23 71.42 

PC2 81.08 59.45 54.05 75.67 89.18 56.75 

Average 53.05 48.22 53.11 67.13 63.36 76.61 

TABLE 7: PERCENTAGE OF SELECTED FEATURES BY F-MEASURE 

CRITERION 

Datasets 
WF 

method 

Filter Methods 

Fisher 

Score 

Gini 

Index 

Kruskal 

Wallis 

mRmR Ttest 

Ant 90 90 95 95 90 90 

Camel 65 85 80 50 85 100 

Jedit 10 65 75 15 65 100 

Lucene 45 25 25 10 20 45 

Tomcat 60 70 70 95 80 75 

CM1 80.95 14.28 47.61 23.8 33.33 90.47 

MC2 56.41 48.71 53.84 71.79 66.66 79.48 

MW1 5.40 75.67 81.08 94.59 89.18 5.40 

PC1 76.19 76.19 76.19 57.14 80.95 85.71 

PC2 81.08 59.45 54.05 75.67 89.18 56.75 

Average 57.00 60.93 65.78 58.80 69.93 72.78 

The implementation results of five filter feature selection 
methods and the proposed fused weighted filter method on 
software fault prediction datasets is shown in table 8 and table 
9. In last two rows of these tables, the average and standard 
deviation of each of the filter methods on all datasets are given. 
This comparison shows that the fused weighted filter method in 
the different datasets has better results rather than the other 
filter methods. The implementation results of the proposed 
method on software fault prediction datasets compare with 
using of all features are shown in table 10. The proposed 
method results graph is shown in Fig. 1. 

TABLE 8: THE RESULT OF PROPOSED WF METHOD AND OTHER FILTER 

METHODS ON TEN DATASETS BY AUC CRITERIA 

Datasets 
WF 

method 

Filter Methods 

Fisher 

Score 

Gini 

Index 

Kruskal 

Wallis 
mRmR Ttest 

Ant 0.88 0.88 0.88 0.88 0.88 0.88 

Camel 0.70 0.69 0.64 0.60 0.76 0.66 

Jedit 0.87 0.84 0.85 0.96 0.83 0.83 

Lucene 0.66 0.66 0.57 0.66 0.45 0.51 

Tomcat 0.85 0.76 0.76 0.83 0.88 0.82 

CM1 0.80 0.87 0.84 0.83 0.90 0.87 

MC2 0.83 0.78 0.83 0.74 0.8. 0.83 

MW1 0.91 0.89 0.91 0.89 0.91 0.89 

PC1 0.87 0.77 0.80 0.82 0.89 0.76 

PC2 0.97 0.98 0.96 0.97 0.97 0.92 

Average 0.83 0.81 0.8. 0.81 0.82 0.79 

standard 

deviation 
0.09 0.10 0.12 0.12 0.15 0.13 

(2) 1

2

r rTP FP
AUC

 
  
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TABLE 9: THE RESULT OF PROPOSED WF METHOD AND OTHER FILTER 

METHODS ON TEN DATASETS BY F-MEASURE CRITERIA 

Datasets 
WF 

method 

Filter Methods 

Fisher 

Score 

Gini 

Index 

Kruskal 

Wallis 
mRmR Ttest 

Ant 0.76 0.76 0.76 0.76 0.76 0.76 

Camel 0.46 0.45 0.43 0.38 0.51 0.42 

Jedit 0.14 0.12 0.13 0.33 0.11 0.11 

Lucene 0.75 0.73 0.73 0.63 0.63 0.75 

Tomcat 0.55 0.55 0.52 0.46 0.55 0.55 

CM1 0.42 0.42 0.31 0.35 0.47 0.42 

MC2 0.77 0.71 0.77 0.67 0.83 0.77 

MW1 0.67 0.33 0.33 0.33 0.33 0.67 

PC1 0.47 0.47 0.57 0.32 0.47 0.57 

PC2 0.33 0.40 0.25 0.33 0.33 0.14 

Average 0.53 0.49 0.48 0.45 0.49 0.51 

standard 

deviation 
0.20 0.20 0.23 0.17 0.21 0.24 

TABLE 10: THE RESULT OF PROPOSED WF METHOD ON TEN DATASETS 

Datasets 

AUC F-measure 

All 

features 
WF method 

All 

features 
WF method 

Ant 0.82 0.88 0.70 0.76 

Camel 0.66 0.70 0.42 0.46 

Jedit 0.83 0.87 0.11 0.14 

Lucene 0.61 0.66 0.60 0.75 

Tomcat 0.80 0.85 0.52 0.55 

CM1 0.64 0.80 0.22 0.42 

MC2 0.81 0.83 0.70 0.77 

MW1 0.89 0.91 0.46 0.67 

PC1 0.81 0.87 0.54 0.47 

PC2 0.91 0.97 0.33 0.33 

Average 0.78 0.83 0.46 0.53 

 
FIG 1: AUC CURVE DIAGRAM OF THE PROPOSED METHOD 

 
FIG 2: F-MEASURE CURVE DIAGRAM OF THE PROPOSED METHOD 

Implementation of the proposed WF feature selection 
method on each dataset, causing a set of final features. 
According to experiment results, features x5 and x11 in the 
NASA dataset and features x1, x2, x6, x9, x18, x31 and x36 in 
the PROMISE dataset are the most effective features to 
improve the prediction accuracy of faults in software modules. 

The results of this paper for PROMISE datasets in Table 11 
and for NASA datasets in Table 12 has been compared with the 
results of other papers by AUC criteria. Also the results of this 
paper for NASA datasets in Table 13 have been compared with 
the results of other papers by F-measure criteria. In each paper, 
by several methods, better accuracy is reported. Finally, for 
each of dataset, the best accuracies are highlighted in the table 
11, table 12 and table 13. 

TABLE 11: COMPARE THE RESULT OF THIS PAPER WITH THE RESULT OF 

OTHER PAPERS ON PROMISE DATASETS BY AUC CRITERIA 

Paper Method Ant Camel Jedit Lucene Tomcat 

This 

paper 
WF method 0.88 0.70 0.87 0.66 0.85 

[6] BNET .082 - 0.66 0.63 0.77 

[21] 

Enhanced APE 0.86 0.80 - - - 

Enhanced W-
SVM 

0.80 0.69 - - - 

Enhanced RF 0.82 0.72 - - - 

TABLE 12: COMPARE THE RESULT OF THIS PAPER WITH THE RESULT OF 

OTHER PAPERS ON NASA DATASETS BY AUC CRITERIA 

Paper Method CM1 MC2 MW1 PC1 PC2 

This 

paper 
WF method 0.80 0.83 0.91 0.87 0.97 

[21] 

Enhanced 
APE 

- - - - 0.95 

Enhanced 

W-SVM 
- - - - 0.94 

Enhanced 
RF 

- - - - 0.85 

[22] 

LR + PSO 

+ Bag 
0.74 0.78 0.75 0.85 0.83 

NB + PSO 
+ Bag 

0.76 0.73 0.75 0.79 0.82 

CART + 

PSO + Bag 
0.61 0.68 0.68 0.83 0.79 

NN BP 0.71 0.71 0.62 0.78 0.92 

[23] 

NB + CIG 0.78 0.71 0.79 0.78 - 

NB + CRF 0.76 0.70 0.77 0.72 - 

NB + CFS 0.76 0.66 0.78 0.79 - 

[28] 

SVM - - - 0.73 0.65 

CSSVM - - - 0.81 0.75 

GA-
CSSVM 

- - - 0.83 0.80 

TABLE 13: COMPARE THE RESULT OF THIS PAPER WITH THE RESULT OF 

OTHER PAPERS ON NASA DATASETS BY F-MEASURE CRITERIA 

Paper Method CM1 MC2 MW1 PC1 PC2 

This 
paper 

Proposed 

WF 

method 
0.42 0.77 0.67 0.47 0.33 

[11] 

DT 0.21 0.56 0.20 0.27 0.00 

KNN 0.13 0.57 0.23 0.43 0.00 

NB 0.24 0.50 0.00 0.33 0.05 

SVM 0.00 0.48 0.07 0.00 0.00 

R-SVM 0.35 0.57 0.46 0.39 0.01 
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The results shown that using the proposed WF method not 
only improves the speed of selecting features, But also has a 
significant impact on improving the accuracy of the fault 
prediction in the software modules. 

VI. CONCLUSION AND FUTURE WORK 

In this paper due to the advantages and disadvantages of the 
filter feature selection methods, we use the combination of 
these methods to select the best features for predicting the fault 
of software modules. We achieved a suitable combined method 
for feature selection bdy the mixture of the feature selection 
methods. Then, this method is evaluated on the variety datasets 
of the software fault prediction. The results show the 
effectiveness of the used method. Therefore, our proposed WF 
method can find the best features with the highest speed for the 
improvement of the fault prediction accuracy. In this research, 
we use the five filter methods. In future we intend to work on 
the other combination of feature selection methods. 
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