
Journal of Communications Technology, Electronics and Computer Science, Issue 2, 2015 

ISSN 2457-905X 

 

18 

 

Implementation and Verification of Synchronous 

FIFO using System Verilog Verification 

Methodology 

Navaid Z. Rizvi
1
, Rajat Arora

2
 and Niraj Agrawal

3
 

1,2,3 
School of ICT, Gautam Buddha University 

Greater Noida, India 

navaid@gbu.ac.in
1
, arora.rajat08@gmail.com

2
, neeraj6418@yahoo.com

3
 

 

 
Abstract - Developing complex nature of patterns & concurrency 

of Integrated Circuits has made conventional coordinated test- 

benches an unworkable answer for testing. Nowadays, testing as 

a word has been substituted with check. Confirmation specialists 

need to guarantee what goes to the plant for assembling is an 

exact representation of the specification of configuration. 

Verification is the maximum time consuming stage in the whole 

design process, thus it has become a necessity to minimize the 

time required to encounter the confirmation prerequisites. The 

relentless growth in the complexity of the system, has led to the 

requirement of a more advanced, well organized and automated 

approach for creating verification environments. As the designs 

gets complex, the probability of the occurrence of bugs increases, 

this entailed the influx of the verification phase for 

authenticating the functionality of the IC’s and to detect the bugs 

at an early stage. In this paper, the synchronous FIFO design is 

verified using System Verilog Verification Environment. 

Keywords—component; formatting; style; styling; insert (key 

words) 

I. INTRODUCTION  

This The continuous growth and complexity of digital design 

requires modem, systematic and automated approaches for 

creating test benches [1], given that up to 70% of the design 

period is spent in the authentication process [2] it has become 

even more critical that verification engineers design test 

benches that are at the advanced of the verification industry. 

The EDA vendors have recognized that a standardized 

approach for verification is required and this approach needs 

to upkeep the structures desired to shape a progressive 

confirmation atmosphere. Though, they don’t actually identify 

in what way the architecture of the test bench surroundings 

must be fabricated. It is still the verification engineer’s 

accountability to do this with the added pressure of making the 

environment re-usable for future chip sets.  

      With this in mind the main goal is to develop a new and 

more effective intuitive way of designing test benches. This 

paper describes the implementation of constrained random test 

stimuli, functional coverage, also describes an approach for 

creating test cases that allow the use of both constrained 

random tests within a single environment. The environment 

built should also have the capability to be easily modified 

where a Device under Test (DUT) of similar structure can be 

verified [3]. As circuits become more complex, the more 

capable verification tools must be used. This verification 

should takes place much earlier than the fabrication process. 

In this paper a verification environment is realized and 

implemented which may detect the maximum errors for proper 

functioning of the synchronous FIFO model.  

       The FIFO (First in First Out) is a sort of memory that is 

ordinarily used to cradle the information, has to utilize 

consistently between diverse systems at distinctive deferrals.       

The FIFO model permits the transmitter to send information, 

while the collector is in not functioning stage. The information 

then tops off the FIFO memory until the beneficiary starts 

emptying it. An overflow occurs as soon as the transmitter 

fills up the FIFO model and attempts to store more data before 

the receiver has read the data out. An underflow occurs when 

the receiver attempts to read data from the FIFO structure, but 

the transmitter did not fed any data into it. The Full and empty 

signals are used by the logic to throttle the transmitter and 

receiver respectively, in order to avoid these critical 

conditions. The Fig. 1 shows the functionality of the FIFO. 

The transmitter puts data into the FIFO, like filling a bucket 

with water. The newest data is on top, whereas the oldest data 

is on the bottom. The receiver gets data out of the FIFO like 

emptying the bucket using a faucet [4]. 

 

II.   DESIGN AND WORKING 

   The Fig. 2 demonstrates the basic blocks through which 

the architecture of   FIFO mode has been realized. This Design 

consists of the Dual Port RAM, Read control logic and Write 

control logic blocks. Instead of Dual port RAM, these memory 

arrays can be implemented with the help of flip flops but dual 

port RAM are chosen due to its simple design. This dual port 

ram allows simultaneous access of the read and write ports i.e.  



Journal of Communications Technology, Electronics and Computer Science, Issue 2, 2015 

ISSN 2457-905X 

 

19 

 

Fig. 1. FIFO functional diagram. 

Read and Write operations can be implemented 

simultaneously. This design has limitation that simultaneous 

Read and Write access cannot take place from the same 

memory location.  

The synchronous FIFO has a unique clock port for both the 

Read and Write operations. The data that is given on the data 

input port is written on the next empty location. But this 

happens only on the rising edge of the clock, when write 

enables and the data valid signals of the write control logic 

block are high. The written memory data is then read out from 

the Read control logic block. This progress when the read 

enable signal and the data valid signal of the block are high. 

There are unavailability for writing data in the FIFO. The 

Fifo_empty signal indicates that there are still vacant locations 

that can be utilized to write further in the memory.  

The main role of dual port RAM component has been to 

write and read the data simultaneously. This special type of 

RAM has two unidirectional data ports, an input port for 

writing data and an output port for the reading data. Each port 

is assigned to have their own data and address buses. The 

write port has a signal named WRITE to allow writing of the 

data. The read port has a signal known as READ to enable the 

data output. The particular dual port RAM examined in this 

paper is synchronous and has a single clock for both ports, as 

depicted in the Fig. 3. Both reading and writing of data occur 

when the clock has its rising edge. 

The functionality of the dual port RAM can be expressed 

with three conditions, the first occurs when the reset signal is 

high and all the output signals (data_out, wr_pointer, 

rd_pointer and status_counter) reset to zero value. The next 

condition occurs when write_enable signal is high and the 

incoming input data (data_in) is written in the memory block 

with the write addresses generated by the write pointer.     

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.  Internal Block Diagram of the FIFO. 

But this only will happen only on the next rising edge of the 

clock. The write enable signal is only generated when the 

FIFO is not full so as to avoid corruption of data. The third 

stage materialize when read_enable signal is high, then the 

data that is written in the memory is read out form the 

memory. The read pointer will generate the read address 

through which the data can be read, but this stage can only 

exists at the next rising edge of the clock. The Read enable 

signal is only generated when the FIFO is not empty so that 

any corrupted data could not be read out from the memory. In 

the presented Fig. 2, the block on the left side is the Write 

control logic block.  This block is used to control the write 

operation of the implemented FIFO design  The block 

basically generates a binary coded write pointer and this 

pointer gets incremented by one location every time, the input 

data is written into the design. Also, this block generates a full 

signal to avoid overwriting a data in the memory block. The 

block on the right side is the read control logic block, this 

block is used to control the read operation of the implemented 

FIFO design. The subunit generates a binary coded read 

pointer which gets incremented by one location every time, 

the written data is read from the design. Also, this block 

generates an empty signal such that no invalid data can be 

read from memory. The verification phase is most important 

step for any successful design.   

                                   III.VERIFICATION PLAN 

     The verification plannings are growing in a rapid manner 

hence it becomes more and more skillfully requirements to 

create a good plan before the verification has been finally 

started [5].  The verification plan must consist of  the entire 

verification process [6] and creatiopn of a good plan will save 

a lot of tedious and unfruitful time later. The whole plan 

should include the time for the complition of process as well 

as the authentication of the coverage result [7]. The theory 

about verification planning has been reported in a well 

orgainined and systematic manner [8],  which proposes a five-

day approach for the complete verification planning process.  

 

 



Journal of Communications Technology, Electronics and Computer Science, Issue 2, 2015 

ISSN 2457-905X 

 

20 

 

 

 

 

 

 

Fig. 3. Block Diagram Dual Port Ram. 

However some adjustments are made to better fit System 

Verilog testbenches. The Block diagram of the verification 

plan has been shown in Fig. 4 and all its components are 

explained in this section.   

     The Interface block is not shown in the plan but this is one 

of the essential modules throughout the verification plan. In 

this particular block all the commonly used signals in both the 

design and the verification environment. The interconnect 

block bridge as an interfaced to the design under-test and the 

check environment. The interface embodies all the pin-level 

associations that are made to the DUT [9]. Basically an 

interface is a heap of nets or variables.     

      The transaction generator is used to generate different 

transactions depending on the test case configurations field 

selection.  For the implemented FIFO design, the transactions 

are RESET, WRITE and READ operations. Using the above 

environment, the transaction generator is defined within the 

Driver block i.e. the coding to generate the read, write and 

reset transactions is done in the Driver block itself. Each 

implemented transaction will generate a test case that is a 

random data which will initiate by the driver and given to the 

DUT to perform the specific operation utilizing the 

functioning of the incoming signals. 

      The driver is the block that translates the transactions in to 

random inputs i.e. test cases. These are given to the DUT and 

the DUT performs specific operation depending upon the 

input given. The transaction generator generates a high level 

transaction like read, write or reset. The driver basically 

converts these transactions into actual inputs. A driver gets the 

information from the generator and drives it to the DUT by 

inspecting and driving the DUT signals [10]. It contains the 

hidden rationale to drive the pins of the DUT as indicated by 

situation gave to it from the sequencer. The scoreboard 

records the operations of the driver and then displays these 

operations systematically. 

      A screen, an aloof commodity, is just to monitor the 

specimens of the DUT signals [11] but cannot be used to drive 

them. A monitor collects information, extracts occasions, 

performs checking, scope and optionally prints follow data. It 

utilized the screen to sign sent to the pins of the DUT from the 

driver. As the name suggests, it basically monitors the 

operations performed by the driver and then it passes its data 

to the scoreboard to display the information 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Verification plan. 

 
      The scoreboard can also be named as tracker as it tracks all 
the operations. The dynamic data types and dynamic memory 
allocation makes the task much easier to implement scoreboard 
in the system Verilog. Normally, a scoreboard confirms 
whether there has been fitting operation of the configuration at 
a practical level. The Scoreboard basically stores the data and 
address when the write operation is done and displays the 
results. Furthermore, it also records the data and addresses that 
had been previously read. It matches the similarity of the data 
and display the outcome. The coverage collector mainly covers 
the coverage related issues of the block.  This block have cover 
the groups and cover points that are used to estimate the 
functional coverage of the design. 

                      

                    IV. DESIGN OUTCOMES AND ANALYSIS 

   

      Initially the outcomes comprised of the Reset, Read and 

Write condition results. Fig. 5 depicts to the scenario in which 

all the output signals are reset to zero which is shown with the 

help of waveform generated in the tool. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. The Reset Waveform. 

 

 

 

 



Journal of Communications Technology, Electronics and Computer Science, Issue 2, 2015 

ISSN 2457-905X 

 

21 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.  Write Condition Waveform. 

 As shown reported in the waveform the initial signal is the 
clock signal. This is a free running signal and all other signals 
will have to change their values only on the rising edge of this 
signal. The next signal is the reset signal, this is the signal that 
dictates the reset condition for all other signals. This status has 
forced the value 1 as such that all the output signals would be 
reset to zero. The output signals data_out, read_pointer, 
write_pointer and the status_pointer are set to zero. 

      The Fig. 6 shows the scenario in which all data is written 

in the FIFO through waveform generated by the Modelsim 

tool. As exhibited in the figure the first signal is the clock 

signal that is a free running signal. All other signals will 

change the values on the rising edge of the clock. The reset 

signal in this case has forced to zero and this reset to zero 

value should be avoided. The data is given on the data_in 

signal (00001111). This data is the input data that is given in 

the FIFO memory. The wr_cs and wr_en signals are also set to 

1, to activate the write control logic of the design. This block 

is responsible for writing the data in the memory. The 

Fifo_empty signal becomes 1 as the FIFO memory is still 

vacant but the Fifo_full signal is set to 0 as the FIFO is not full 

in this situation. The wr_pointer which is write pointer signal 

has been binary coded, gets incremented by one value. As 

many times the rising edge of the clock is coming, the 

wr_pointer gets incremented and the incoming data gets 

written into the FIFO memory on that write pointer location. 

     The Fig. 7 laid out the scenario in which the incoming data 
is read out from the FIFO. As depicted through the waveform, 
the first signal is the clock signal as elaborated in the write 
status explanation. The data that was written in the memory 
(00001111) with the help of data_in signal is now read out 
form the FIFO memory. The rd_cs and rd_en signals are set to 
1 so to activate the read control logic of the design.This block 
is basically responsible for reading data from the memory. The 
Fifo_empty signal is 1 in this circumstances  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Read Condition Waveform. 

as the FIFO is still in empty state and Fifo_full signal is 0 as 
the FIFO is not full in this scenario. In this case, now the 
rd_pointer that is the read pointer signal gets incremented by 1 
value.  Now the read pointer will traverse through all those 
locations on which the data was written by the write pointer. 
When all the data written would be read out then the FIFO will 
again be completely empty. The written data is read out from 
the FIFO with the help of data_out signal.   

           V. VERIFICATION RESULTS AND ANALYSIS 

The main result is the coverage report as demonstrated in 

the Fig. 8. The practical coverage is the determination of the 

amount of the  design usefullness having induced by the 

verification environment [13]. Initially the code includes, the 

type of cover groups to screen the stimuli being put on the 

DUT. The responses and reaction to the stimuli are 

additionally checked to figure out what usefulness has been 

worked out. The cover groups ought to be indicated in the plan 

of verification. Inside a scenario of test, their handiness is 

learned by dissecting the RTL code and comprehension of the 

data. The cover points turn out to be all the more capable 

inside the recreation when they are crossed together to inside  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8. Coverage Report. 

 
 

 



Journal of Communications Technology, Electronics and Computer Science, Issue 2, 2015 

ISSN 2457-905X 

 

22 

 

recognize more noteworthy levels of reflection of an outline 

[13]. The cover groups give an effective system in 

distinguishing zones of useful scope inside of a configuration. 

The Fig. 8 shows the coverage report of the design. This 

report basically shows the coverpoints that has been created to 

cover the different situations of the design automatically. The 

coding part of this coverage report has been given below : 

 
covergroup cg@(posedge cports.clk); 

coverpoint cports.data_in{ 

 bins data_range   = {0,255}; 

} 

coverpoint cports.rd_cs { 

    bins  rd  = {0,1};} 

coverpoint cports.wr_cs { 

    bins  wr  = {0,1};} 

coverpoint cports.rd_en { 

    bins  ren = {0,1};} 

coverpoint cports.wr_en { 

    bins  wen = {0,1}; 

       In the coding, a covergroup is created that is generated 
which is clearily visible through the coverage report. The 
coverpoints are created so as to cover the each important aspect 
of the design [12]. The cports.rd_cs and cports.rd_en 
coverpoint has covered  both the scenarios in which the Read 
control logic is selected in one situation and not selected in the 
other. It covers these conditions as these signals are given 0 
and 1 value randomly so as to cover both the situations. This is 
the reason that the  coverage for these signals are coming 100% 
The cports.wr_cs and cports.wr_en  covers both the scenarios 
in which the Write control logic is selected in one and not 
selected in the other phase.  Both the situations are cover by the 
signals which are given 0 and 1 value. Due to this same reason 
that the coverage for these signals also are showing to be 100 
%.The most essential coverpoint of these is the first one i.e. 
cports.data_in . This coverpoint basically cover the scenarios 
in which random test data is generated automatically and is 
given to the FIFO design. This coverpoint basically covers the 
conditions whether all types of data is given to the design or 
not in the specified range that is from 0 to 255. This range can 
also be  visible through the coding. It checks whether all the 
types of data being written in the design and the same data that 
was written is read out form the design. The random data that 
is being written and read out form the design can be seen in the 
scoreboard report that is given in the next section. 

  The next is the scoreboard report [13] explained below. 

The scoreboard report that is generated with the help of 

Scoreboard block of the verification plan. The scoreboard 

report generated in this case records the transactions that are 

taking place in the verification environment. For the above 

design it records the Reset, Write or Read scenario are being 

implemented by the verification environment. It records the 

random test case data that is generated by the Write control 

logic to be written in the FIFO memory. It also records the test 

case data that is read out form the memory with the help of 

Read Control Logic.  Furthermore, it compares  both the data 

being written matches with the data read out. The Driver 

requests are given to the scoreboard through the monitor 

block. The generated scoreboard report for the design has been 

given below : 

 
#                   41ns : Write posting to scoreboard data = 3d 

#                   43ns : Read posting to scoreboard data = 3d 

#                   43ns : Write posting to scoreboard data = 34 

#                   43ns : Read posting to scoreboard data = 34 

#                   43ns : Write posting to scoreboard data = 8c 

#                   45ns : Read posting to scoreboard data = 8c 

#                   45ns : Write posting to scoreboard data = 8c 

#                   45ns : Read posting to scoreboard data = 8c 

#                   45ns : Write posting to scoreboard data = c6 

#                   47ns : Read posting to scoreboard data = c6 

#                   47ns : Write posting to scoreboard data = c0 

#                   47ns : Read posting to scoreboard data = c0 

#                   47ns : Write posting to scoreboard data = aa 

#                   49ns : Read posting to scoreboard data = aa 

#                   49ns : Write posting to scoreboard data = 80 

#                   49ns : Read posting to scoreboard data = 80 

#                   49ns : Write posting to scoreboard data = 77 

#                   51ns : Read posting to scoreboard data = 77 

#                   51ns : Write posting to scoreboard data = 65 

#                   51ns : Read posting to scoreboard data = 65 

          #                   93ns : Terminating simulations 

 

VI. CONCLUSION 

       One of the initial objectives of this paper was to design 

and implement a FIFO module. This task is successfully 

completed as the FIFO module is designed and implemented 

using the Verilog language.  The next outcome was to use this 

FIFO module the building the verification environment. The 

last and most crucial target of this work was to implement the 

verification plan of realized FIFO Design using System 

Verilog Framework. The test cases which are the input data 

that need to be given was randomized and automated using the 

implemented verification model. The system Verilog 

functional coverage methodology is adopted that verifies the 

functionality of the design in most effective way. All the 

blocks of the verification plan are implemented using system 

Verilog language.  

      The outcomes were obtained as functional Coverage and 

the scoreboard reports using verification methodology. 100 % 

coverage has been achieved for the constraints that were 

applied to the design. Also the scoreboard report is generated 

using the scoreboard block of the verification plan. This report 

explained the various transactions that took place to achieve 

this coverage for the design.  

     If the plan are well organized and skillful they will reduce 

lot of undesirable design time. This work can be further 

extended y realizing other complex systems verification 

methodologies. 

 
 



Journal of Communications Technology, Electronics and Computer Science, Issue 2, 2015 

ISSN 2457-905X 

 

23 

 

REFERENCES 

[1] Chris Spear, “SystemVerilog for Verification”, Springer, Vol 1 pp. 1-5, 
2005. 

[2] Janick Bergeron, “Writing Testbenches Using SystemVerilog” Springer, 

Vol I pp. 1-10 , 2006 
[3] Takimoto, Y., “Recent activities on millimeter wave indoor LAN system 

development in Japan," Dig. IEEE Microwave Theory and Techniques 

Society Int. Symp., 405-408, Jun. 1995. 
[4] Bergeron, Janick, Writing testbenches: functional verification of HDL 

models, Springer, Edition 2003.  

[5] Wang, Xin, Tapani Ahonen, and Jari Nurmi, "A synthesizable RTL 
design of asynchronous FIFO”, System-on-Chip Proceedings. 2004 

International Symposium on. IEEE, pp. 123-128, 2004. 

[6] Yakovlev, Alexandre V., Albert M. Koelmans, and Luciano Lavagno. 
"High-level modeling and design of asynchronous interface logic." IEEE 

Design & Test of Computers, Vol 12.1, pp 32-40, 1995. 

[7] K.K. Yi, “The Design of a Self-Timed Low Power FIFO Using a Word-
Slice Structure”, M.Phil Thesis, University of Manchester, September 

1998. 

[8] Chelceq T., Nowick, S.M., “Low-latency asynchronous FIFO’s using 
token rings”, Advanced Research in Asynchronous Circuits and 

Systems, Proceedings. Sixth International Symposium, Vol 2-6 , pp 210 
– 220, April 2000. 

[9] Andreas Meyer, “Principles of Functional Verification” Vol I, pp. 1-10, 

2004.  
[10] Doulos Ltd, “SystemVerilog Golden Reference Guide” Vol II, pp. 1-11, 

2003. 

[11] J. Bergeron, E. Cerny, A. Hunter, and A. Nightingale, “Verification 
Methodology Manual for System Verilog.”, Springer, 2006. 

[12] Synopsys, “System Verilog Assertions Checker Library Quick 

Reference”, April, 2006. 
[13] S. Vijayaraghavan and M. Ramanathan, “A Practical Guide for System 

Verilog Assertions”. Springer, 2005. 

[14] Keaveney, M., McMahon, A., O'Keeffe, N., Keane, K., & O'Reilly, J. 
“The development of advanced verification environments using system 

verilog.”, Signals and Systems Conference, 208.(ISSC 2008), pp. 325-

330, 2008. 

 

 


